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10. POWER 

AUTOMORPHISMS 
 

§10.1. Definition and Examples 
 This section is based on work I did in the late 

1960s. A power automorphism of a group G is an 

automorphism that maps every subgroup of G onto itself. 

Under such an 

automorphism every 

element is mapped to 

some power, though 

not necessarily the 

same power for each 

element. 

 

 We denote the group of power automorphisms of 

G by P(G). 

 

 Power automorphisms are relevant to the study of 

the auto-projectivities (automorphisms of the lattice of 

subgroups). The power automorphisms are precisely 

those group automorphisms that induce the trivial auto-

projectivity in the lattice of subgroups. The group of auto-

projectivities of G is thus isomorphic to Aut(G)/P(G). 
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Theorem 1: If G is generated by elements of order 2 then 

P(G)  1. 

Proof: If g has order 2 and  is a power automorphism 

then g  g, and since 1 = 1, g = g. So power 

automorphisms fix elements of order 2 and so, if G is 

generated by them, the only power automorphism is the 

identity function. 

 

Example 1: Since dihedral groups are generated by 

elements of order 2, P(D2n)  1 for all n. 

 

Example 2: P(Cn)  ℤn
#. The power automorphisms are 

the maps x → xn for n coprime to n.  

 

 We can identify P(Cn) as a direct product of cyclic 

groups by using the following facts: 

(1) ℤmn
#  ℤn

#  ℤn
# if m, n are coprime, 

(2) ℤp
n#  Cp

n−1  Cp−1 if p is odd, 

(3) ℤ2
n#  C2

n−2  C2 if n  3, 

(3) ℤ4
#  C2. 

[See my notes on Number Theory, Chapter 6] 

 

Example 3: 

P(C2000)  ℤ2000
#  ℤ16

#  ℤ125
#  C4  C2   C25  C4. 
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Theorem 2: If    P(G) and g  G has infinite order then 

g = g1. 

Proof:  Suppose g = gn and g
−1

 = gm. 

Then (g)
−1

 = (gn)
−1

 = gmn. 

But this is just g and so gmn−1 = 1. 

Since g has infinite order we must have mn = 1. 

 

 If   Aut(G) and g  G then [g, ] denotes g−1g. 

 

Theorem 3: If   P(G) and g  G then the inner 

automorphism generated by [g, ] is in P(G). 

Proof: Let H  G and g  G. 

Then (Hg) = Hg = H(g) whence H[g,] = H. 

 

§10.2. Homogeneous and Universal Power 

Automorphisms 
 A homogeneous power automorphism, , is one 

where for all m  ℤ there exists n  ℤ such that if |x| = m 

then x = xn. In other words, under a homogeneous power 

automorphism elements of the same order map to the 

same power. We denote the set of homogeneous power 

automorphisms of G by H(G). 

 If n  ℤ, we denote the map g →gn by n. If n is 

an automorphism of G and n
−1 = m for some m then we 

call n a universal power automorphism for G. We 
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denote the set of universal power automorphisms for G by 

U(G). 

 You may be wondering why the definition of 

universal power automorphisms refers to inverses while 

those for power automorphisms did not. You’ll find out 

soon. 

 

Theorem 4: U(G)  H(G)  P(G)  Aut(G) and all are 

normal subgroups of Aut(G). 

Proof: It’s obvious that U(G)  H(G)  P(G)  Aut(G). 

Moreover it’s easy to show that all these sets are closed 

under composition, or multiplication of functions. We 

need to be careful when it comes to inverses. 

 The inverse of a power automorphism is a power 

automorphism because we insist that power 

automorphisms map every subgroup onto itself. 

 If   H(G), then for all g, h  G with the same 

order m, there exists n  ℤ such that g = gn and h = hn. 

Now GCD(m, n) = 1, so mh + nk = 1 for integers h, k. 

Now (gn)
−1

 = g = gmh + nk = gnk. 

Hence g
−1

 = ((gn) 
−1

)k = gk. 

Similarly h
−1

 = gk and so −1  H(G). 

 

 So U(G), H(G) and P(G) are all subgroups of 

Aut(G). The fact that they are all normal in Aut(G) will 

be left as an exercise. 
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 In a later section we will discuss power 

automorphisms of the Prüfer p-groups. Here there 

automorphisms of the form n where n
−1 is homogeneous 

but not universal. 

 

Theorem 5: H(G)  Z(Aut(G)). 

Proof: Let   Aut(G) and suppose that   U(G). 

Let g  G. Then |g| = |g| and so there exists an integer n 

such that g = gn and (g) = (g)n. 

Then g = (g) = (g)n = (gn) = g. 

 

Example 4: Aut(Q8)  S4, as shown in Example 5 of 

Chapter 9. 

Q8 = A, B | A4, B2 = A2, BA = A−1B. 

If  is the map that sends A→A−1, B→B and 

     is the map that sends A→A, B→B−1 then 

P(Q8) = ,  | 2, 2,  =   V4. 

H(Q8) = U(Q8) =   C2. 

 

§10.3. Power Automorphisms of Abelian 

Groups 
Theorem 6: If G is a non-periodic abelian group then 

P(G) = H(G) = U(G)  C2, consisting of 1 and −1. 

Proof: Let x  G with infinite order and let y  G. 

Let   P(G). Then x = xn where n = 1. 

Let y = ym and (xy) = (xy)t. 

Suppose that x = x. 
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Case I: y has infinite order and y = y−1: 

Then (xy) = xy−1 = (xy)t. 

In that case x1−t = y1+t. 

Applying  to both sides x1−t = y−(1+t) and so y2(1+t) = 1. 

Since y has infinite order we would have t = −1. But then 

x1−t = 1 which gives t = 1, a contradiction. 

Case II: y has finite order: 

Then (xy) = xym = (xy)t. 

Then xt−1 = ym−t. 

Since ym−t has finite order, t = 1 and so y = y. 

 

So for all y  G, y = y and hence  = 1. 

 

Suppose that x = x−1. 

Now −1  P(G) and hence so is −1. But −1 fixes x and 

so by the above, −1 = 1, and so = −1. 
 

Theorem 7: Let G be a finite abelian p-group of exponent 

pn. Then P(G) = H(G) = U(G)  ℤpn#. 

Proof: G is a direct product of its Sylow p-subgroups. 

Let a  G of order pn. Then G = a  B for some B. 

Let   P(G) and suppose that a = ar. Let b  B. 

Then b = bk for some k. 

Then (ab) = arbk = (ab)t for some t. 

Hence ar−t = bt−k. Since a, B are disjoint, ar−t = bt−k = 1. 

 bt = bk and pn | r − t. Since |b| divides pn, bk = bt = br. 

Hence  = r. 
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Theorem 8: For all finite abelian groups G, P(G) = U(G). 

Proof: For each prime p, let Gp denote the Sylow p-

subgroup of G and suppose that the exponent of Gp is mp. 

Let   P(G). Then  restricted to Gp is a power 

automorphism of the form x → xnp. By the Chinese 

Remainder Theorem (see my notes on Number Theory), 

there exists N such that N  np(mod mp) for each prime p 

dividing |G|. 

 

§10.4.  Automorphisms of the 

Prüfer Groups 
 In Chapter 7 we discussed the Prüfer p-groups. 

ℤp = A1, A2, ... | A1
p, A2

p = A1, A3
p = A2, ... . 

This is an infinite abelian group, but although the 

commuting relations are missing they can be deduced 

from the power relations. 

 The elements have the form Ai
k with 0  k < p. It is 

locally cyclic meaning that any finite subset is contained 

in a cyclic subgroup. For if X = Ai
k and Y = Aj

h, with 

i  j then Ai = Ajp
j−i and so [X, Y] = 1. In fact the only 

subgroups are 1, A1, A2, …, Ai, …, ℤp. Since no 

two of these are isomorphic, every automorphism of ℤp 

must fix every subgroup. Hence Aut(ℤp) = P(ℤp). 

 Let  = (k1, k2, …) be an infinite sequence where 

for each i, 0  ki < p and k1 > 0. Define : ℤp→ℤp to 
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be the automorphism induced by mapping each Ah to Ah
N 

where N = k1 + pk2 + p2k2… + ph−1kh. 

 This is well-defined because Ah
p = Ah−1 and, under 

, Ah→Ah
N and so Ah

p →Ah
pN = Ah−1

N = Ah−1
M where 

M = k1 + pk2 + p2k2… + ph−2kh−1 since |Ah−1| = ph−1. 

 It is easy to check that  is a power 

homomorphism. Moreover it is clearly a homogeneous 

power homomorphism. But unless there exists K such that 

kn = 0 for all n  K,  is not a universal power 

homomorphism. 

 The expressions of the form  are usually written 

as formal series as 
n=1

 

 k1p
n−1 where for each n, 0  kn < p. 

These can be made into a ring called the ring of p-adic 

integers and Aut(ℤp) = P(ℤp) = H(ℤp) is isomorphic to 

the group of units of this ring. However U(ℤp) is 

isomorphic to the group of integers that are  coprime to p.  

 

§10.5.  The Centrality Theorem 
I denote the image of an element g under the 

function  by g and I define g− to be (g)−1. I also define 

[g, ] = g−1g and [g, , h] = [[g, ], h]. 

 

Theorem 8: If  is a power automorphism of G and 

g  G then the inner automorphism induced by [g, ] is 

also power automorphism of G. 

Proof: Let H  G and let g  G. 
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Then (Hg) = Hg = Hg
 whence 

H = Hgg−1
 = Hg−1g

 = H[g,]. 

 

Theorem 9: If  is a power automorphism of G and 

g, h  G then [g, , h][h, , g] = 1 and 

[g, , h]  g  h. 

Proof: Since gh = (gh)  gh, gh commutes with gh. 

Hence 

[g, , h][h−1, , g−1] = gg−h−1g−1(gh)(gh)h−g−1 

                                = gg−h−1g−1(gh)(gh)h−g−1 

                                = 1. 

By Theorem 6, [g, , h]  h and [h−1, , g]  g. 

Hence for all g, h  G, [g, , h]  g  h. 

Finally, [h−1, , g−1] = [[h, ]−1, g]−1 

                                 = [h, , g][h, ]−1
 

                                 = [h, , g] since [h, , g]  h. 

 

An automorphism of a group G is central if [, g]  Z(G) 

for all g  G. 

 

Theorem 10: If   P(G) and [gi, , hj] = 1 for i = 1, …, 

n and j = 1, …, m then  











==

m

j

j

n

i

i hg
11

,,   = 1. 

Proof: By Theorem 2 we may assume that m  n. 

We prove this by induction on m. 

If m = 1 then n = 1 and [g1, , h1] = 1 by assumption. 



 190 

Suppose m > 1. Then 











==

m

j

j

n

i

i hg
11

,,   = 









=

m

n

i

i hg ,,
1



mh
m

j

j

n

i

i hg 









−

==

1

11

,,   = 1, 

by the induction hypothesis. 

 

Theorem 11: Suppose G = x, y is an abelian p-group, 

written additively, where |x| = pm and |y| = pn and where 

n  m. Then G = x  ux + y for some u. 

Proof: Choose u so that ux + y has minimal order pt. 

Clearly t  n  m. 

Suppose ux + y  x  0. 

Then pt−1(ux + y) = pn−1rx for some x. 

Hence pt−1[(u − pm−tr)x + y] = 0, a contradiction. 

 

 The following is one of my own theorems, proved 

as part of my PhD thesis. 

 

Theorem 12 (COOPER): Every power automorphism is 

central. 

Proof: Let F be a group with a non-central power 

automorphism . 

Then for some g, h  F, d = [g, , h]  1. 

By Theorem 9, d  g  h  Z(K) where K = g, h and 

so |g|, |h| are both finite or both infinite. 

 

Suppose |g|, |h| are both infinite. 

Then g = g−1 and h = h−1, for if g = g or h = h we would 

obtain a contradiction by Theorem 2. 
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Hence [g, ] = g−2 and [h, ] = h−2. 

By Theorem 7, h[g,] = h−1, since d  1. 

Hence [g, , h] = h2. Similarly [h, , g] = g2. 

By Theorem 8, g2h2 = 1 whence 

[g, , h] = [g−2, h] = 1, a contradiction. 

 So |g| and |h| are both finite. By Theorem 9 we may 

assume that they both have prime power order. By 

Theorem 2 the prime must be the same, say p. in each 

case. Since  is non-central on K/dp we may assume that 

dp = 1. 

 

Let H = [g, ], [h, ]. 

We may suppose that |[g, ]|  |[h, ]|. 

Now [h, ] = hr for some integer r. 

Hence [[g, ], [h, ]] = [g, , hr] = [g, , h]r 

                                                     d  Z(H). 

Hence H is nilpotent of class at most 2. 

Being finitely generated H is finite. 

If p = 2 and |h| = 2s, it follows that [h2s−1
, ] = 1 whence  

r  is even and H is abelian.   

If p > 2 then H being nilpotent, it is a finite regular p-

group. 

Hence, by Theorem 6, H is verbally abelian, so 

[g, ]  [g, ]u[h, ] for some u. 

Now d and [g, ] are both contained in g and so one is a 

power of the other. 

However d commutes with h while [g, ] does not. 

Hence  d = [g, ]t for some t. 
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Then if v = u(1 − t), 

[gv, h, ] = [g−utguh, ] = (guh)−1[g−ut, ](guh)[guh, ] 

                                     = d−u[gu, ][gu, , h][h, ] 

                                     = [g, ]u[h, ]. 

So [g, ]  [gvh, ] = 1 and so either [g, ] = 1 or 

[gvh, ] = 1 or g  gvh = 1. 

Therefore by Theorem 2 [g, , gvh] = 1. 

But g, h = g, gvh and so, by Theorem 3,  restricted to 

g, h is central, a contradiction. 

 

Corollary 1: 

Power automorphisms fix the elements of G. 

 

Corollary 2: Conjugates map to the same power under a 

power automorphism. 

Proof: Suppose that   P(G) and that g = gr. 

Let h  G. 

Then (h−1gh) = (g [ g,h]) 

                       = g[g, h] 

                       = gr−1h−1gh 

                       = h−1grh, since gr−1  Z(G) 

                       = (h−1gh)r. 

 

 The kern of a group G is the intersection of all the 

normalisers of the subgroups of G. It is the set of elements 

of G that induce inner automorphisms that are power 

automorphisms. 
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Corollary 3: K(G)  Z2(G). 

 

§10.6. Hamiltonian Groups 
 A Dedekind group is a group in which every 

subgroup is normal. In such a group every inner 

automorphism is a power automorphism. Clearly all 

abelian groups are Dedekind. A Hamiltonian group is 

defined to be a non-abelian Dedekind group. 

 Clearly G is Dedekind if and only if it is equal to 

its kern.  

 

 Let K be the class of Dedekind groups. 

Then A  K. The Quaternion group Q8 is non-abelian and 

Hamiltonian. 

 

Theorem 13: K is S-closed and Q-closed. 

Proof: Let G  K and let H  G. 

If K  H then K  G and so K is normal in G, and hence 

normal in H. Hence H  K. 

Let H  G and let K/H  G/H for some K. 

Since K  G, K is normal in G and hence K/H  G/H. 

Hence G/H  K.  

 

Example 6: K is not closed under P because S3/A3 and 

A3 are both cyclic, and hence belong to H. Yet S3 is not 

Hamiltonian. 
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Theorem 14: Hamiltonian groups are class 2-nilpotent. 

Proof: Suppose that G is a Hamiltonian group. 

Every inner automorphism, being a power automorphism, 

is central. 

So, if x, y  G then xy = xz for some z  Z(G). 

Hence G  Z(G) and so G/Z(G) is abelian. 

This means that Z(G/Z(G)) = G/Z(G) and so Z2(G) = G. 

 

Theorem 15: Hamiltonian groups are periodic. 

Proof: Let G  D − A. We begin by showing that elements 

of infinite order, if there are any, must commute. Suppose 

that x, y are elements of infinite order that do not 

commute. 

Then x−1yx = y−1 and y−1xy = x−1. 

Hence [x, y] = x−1(y−1xy) = x−2. 

But [x, y] = (x−1yx)y = y2 so x−2 = y2. 

It follows that y2 commutes with  x and so 

[x, y3] = [x, y] = 1. 

But by the above argument this will mean that x−2 = y6 and 

so y4 = 1, a contradiction. 

 

Recall that G denotes the torsion subgroup of G. Now if 

G < G, G will be generated by elements of infinite order 

and so will be abelian, a contradiction. Hence G is 

periodic. 

 

 Being a periodic nilpotent group of class 2 or less, 

a Hamiltonian group is the direct sum of its Sylow 
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subgroups, each of which will be Hamiltonian. So now 

we must investigate Hamiltonian p-groups. 

 

Theorem 16: There are no Hamiltonian p-groups if p is 

odd. 

Proof: Suppose G is a Hamiltonian p-group, where p is 

an odd prime. G is verbally abelian, and every power 

automorphism of G, including the inner ones, is a power 

automorphism of G, the corresponding abelian group. 

 Let g, h be two non-commuting elements of G and 

let H = g, h and suppose that |h| divides |g|. 

 Let  be the power automorphism of G induced by 

conjugation by g in G. Then  restricted to H is a power 

automorphism of H and hence it has the form x → xn for 

some n. So g = gn and g−1hg = hn. 

Since |g| divides n −1, |h| divides n −1 and so hn = h, a 

contradiction. 

 

Theorem 17: 

Suppose G = a, b is a nilpotent 2-group of class 2 where 

a is normal in G, |a|  |b| and a  b > 1. 

Then G  Q8. 

Proof: Let |a| = 2n and |b| = 2m where n  m. 

Let |G:a| = 2t. Then t < m  n. 

Now [b, a] = a2
rk for some odd k and some r. 

Since G is non-abelian, r  1. 

Now b2
t
 = as2

q
 for some odd s and some q.  

[NOTE: For G = Q8 = a, b | a4, b2 = a2, ba = a−1b, 
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t = 1, m = n = 2, r = 1, k = 1, s = q = 1] 

 

Then |a2
q| = 2n−q and |b2t| = 2m−t. Hence q = n + t − m. 

Let c = av2
n−m

b for some v. 

 c2
t
 = a2

n−m+t
bt[b, av2

n−m
]2

t−1(2
t
− 1) 

            = a2
q
[v+s+k2

r−1v(2
t
−1)]. 

If v[1 + k2r−1(2t − 1)]  −s (mod 2m−t) then c has order 2t. 

If r  2 then 1 + k2r−1(2t − 1) is odd and so this congruence 

can be solved for v. For such an element v, |c| = 2t and so 

G = a, b = a, c. Since |G| = 2n+t = |a|.|c|, a  c = 1. 

Hence r = 1, [b, a] = a2k. Hence b−1ab = a1−2k. 

Since [b, a]  Z(G), a2k, and hence a2  Z(G). 

Now a2 = (a2)b = (ab)2 = a2−4k, from which we conclude 

that a4k = 1. Again, since k is odd, a4 = 1. 

Since a  b > 1, b2 = a2  1. 

So G  Q8. 

This proof is based on one in Group Theory by Eugene 

Schenkman (page 192). 

 

Theorem 18: Let G be a Hamiltonian 2-group. 

Then G  Q8  A where A is an elementary abelian group. 

Proof: By Theorem G is nilpotent of class 2. 

Let a, b  G such that ab  ba. Let Q = a, b. 

Now a, b are normal subgroups of G, and hence of Q, 

and if they are disjoint then Q = a  b. Hence ab = ba, 

a contradiction, so a  b > 1. 
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By the Theorem 16 Q  Q8. 

 

 Let K = CG(H). The cosets of K in G are thus: 

K, Ka, Kb, Kab 

since 1, a, b and ab induce different inner automorphisms 

on Q. Suppose that k  K of order 4. 

Then ak = {1, ak, a2k2, a3k3}. 

Now b−1(ak)b = a−1k = a3k, which is not one of the powers 

of ak, a contradicting the fact that G is Hamiltonian. 

Hence K has no element of order 4. It must therefore be 

an elementary abelian group. 

It can be viewed as a vector space over ℤ2. 

Now a2  K and so can be viewed as a 1-

dimensional subspace of K. The only basis for a2 is {a2} 

and this can be extended to a basis, B, for K. 

Let L = B − {a2} and let A be the subspace spanned 

by L. Additively L is an elementary abelian 2-group. 

Clearly G = Q  A which has the required form. 

 

Theorem 19: A Hamiltonian group is isomorphic to 

Q8  H where H is an abelian group with no element of 

order 4. 

Proof: Let G be a Hamiltonian 2-group. 

By Theorem 13, G is nilpotent of class 2. 

By Theorem 14, G is periodic. 

Hence G is the direct product of its Sylow subgroups, 

each of which is a Dedekind group. 
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By Theorem 15 the Sylow p-subgroups for odd primes p, 

are abelian. Let P be the Sylow 2-subgroup. It must be 

Hamiltonian. 

By Theorem 17, P  Q8  A where A is elementary 

abelian. Hence G  Q8  A  B where B is the direct 

product of the Sylow p-subgroups for odd primes p. Now 

take H = A  B. 

 

Note that in Theorem 17 we used the standard 

theorem of vector spaces that every linearly independent 

subset of a vector space can be extended to a basis. 

However the proof that you’ve seen only works for 

finite-dimensional vector spaces. To prove it for all vector 

spaces one needs Zorn’s Lemma, which is equivalent to 

the Axiom of Choice. 

It can be shown that there cannot possibly exist a 

proof that the Axiom of Choice is true, nor a proof that it 

is false. Therefore you’re logically free to accept or reject 

the Axiom of Choice! 

If you prefer to be an Axiom of Choice agnostic 

then I’m afraid that you will have to limit Theorem 18 to 

finitely generated Hamiltonian groups. 
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EXERCISES FOR CHAPTER 10 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) The only power automorphisms for a dihedral group 

is the trivial one. 

(2) P(ℝ)  ℝ#. 

(3) For all periodic abelian groups all power 

automorphisms are universal. 

(4) Homogeneous power automorphisms commute with 

any automorphism. 

(5) The kern of a group is the intersection of the 

normalisers of all the subgroups of G. 

(6) If  is a power automorphism of G then for all g  G 

there exists  z  Z(G) such that g = gz. 

(7) Q8 is the only finite Hamiltonian 2-group. 

(8) There are no Hamiltonian groups of finite odd order. 

 

Exercise 2: How many power automorphisms of order 2 

are there for C1440? 

 

Exercise 3: Let G = A, B | A3, B4, BA = A−1B. 

Find P(G) and U(G). 

 

Exercise 4: Let G = A, B | A16, B16, [A, B] = B8. 

(a) Show that G is nilpotent of class 2. 

(b) Show that A = A3, B = B11 induces an automorphism 

of G. 
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(c) Show that   P(G). 

(d) Is   H(G)? 

(e) Find the order of . 

 

 

SOLUTIONS FOR CHAPTER 10 
 

Exercise 1: 

(1) TRUE: All non-trivial dihedral groups are generated 

by elements of order 2. 

(2) Remember that ℝ is normally written additively, so 

that a homogeneous power automorphism would be 

written as x→nx for some non-zero n. Now it is true that 

all such maps are automorphisms, but they are not power 

automorphisms because the do not map every subgroup 

onto itself. For example x→2x maps ℤ to 2ℤ. An element, 

x, of infinite order can only be mapped to x or −x by a 

power automorphism and, in fact, the only non-trivial 

power automorphism of ℝ is x→−x. 

(3) FALSE: The Prüfer groups have non-universal power 

automorphisms. 

(4) TRUE 

(5) TRUE 

(6) TRUE: This is the Centrality Theorem 

(7) FALSE: Q8   C2,  Q8   C2  C2, … are all 

Hamiltonian 2-groups. 

(8) TRUE 

Exercise 2: P(C1440)  ℤ1440
#. Now 1440 = 25.32.5 so 
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P(C1440)  ℤ32
#  ℤ9

#  ℤ5
#  C8  C2  C3  C2  C4. 

The Sylow 2-subgroup has 4 direct factors so the number 

of elements of order 2 is 24 − 1 = 15. 

 

Exercise 3: P(G)  C2 where generated by  where 

A = A and B = B−1. 

U(G)  1. 

 

Exercise 4: 

(a) G = B8. 

Since A−1B−1AB = B8, A−1B−1A = B7 and so A−1BA = B9. 

Then A−1B8A = B72 = B8, so B8  Z(G). 

Hence G  Z(G) and so G is nilpotent of class 2. 

(b) Under : A→A3 and B→B11. 

So Now (A3)16 = A48 = 1, (B11)16 = 1. 

A−3B11A3 = B11.93
 = B8019 = B3 and (B9)11 = B99 = B3. 

So A and B satisfy the same relations as A, B and hence 

 is an automorphism. 

(c) (ArBs) = A3rB11s = 


(ArBs)3 if r is even

(ArBs)11 if r is odd
 . 

Hence  is a power automorphism. 

(d) Since A, B have the same order, and A = A3 and B 

= B11,  is not homogeneous. 

(e) Under : A→A3→A9→A27 = A11→A33 = A and 

B →B11→B121 = B9→B99 = B3 →B33 = B. 

Hence  has order 4. 
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