10. POWER
AUTOMORPHISMS

810.1. Definition and Examples
This section is based on work | did in the late
1960s. A power automorphism of a group G is an
automorphism that maps every subgroup of G onto itself.
1 =3 Under such an
AN automorphism every
N element is mapped to
*“{ some power, though
A not necessarily the
& same power for each

element.

We denote the group of power automorphisms of
G by 9(G).

Power automorphisms are relevant to the study of
the auto-projectivities (automorphisms of the lattice of
subgroups). The power automorphisms are precisely
those group automorphisms that induce the trivial auto-
projectivity in the lattice of subgroups. The group of auto-
projectivities of G is thus isomorphic to Aut(G)/9(G).
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Theorem 1: If G is generated by elements of order 2 then
PG) = 1.

Proof: If g has order 2 and 6 is a power automorphism
then ¢° e (g), and since 1° = 1, ¢g° = g. So power
automorphisms fix elements of order 2 and so, if G is
generated by them, the only power automorphism is the
identity function.

Example 1: Since dihedral groups are generated by
elements of order 2, $(Dn) = 1 for all n.

Example 2: 9(Cy) = Zn*. The power automorphisms are
the maps x — x" for n coprime to n.

We can identify 9(Cy) as a direct product of cyclic
groups by using the following facts:
(1) Zmn* = Zn* x Zy* if m, n are coprime,
(2) Zp* = Cyn-1 x Cpy if p is 0dd,
(3) Zon* = Con-2 x Cpif n > 3,
(3) Z4# = C..
[See my notes on Number Theory, Chapter 6]

Example 3:
P(Ca000) = Zaooo" = Za6" x Zazs" = Cq x Cy x Cos x Ca.
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Theorem 2: If 6 € 9(G) and g € G has infinite order then
g° = gL,

Proof: Suppose g° = g" and ge_l =g

Then (') = (¢")* " =g™.

But this is just g and so g™1 =1,

Since g has infinite order we must have mn = 1.

If 0 € Aut(G) and g € G then [g, 0] denotes gg°.

Theorem 3: If 6 € #(G) and g € G then the inner
automorphism generated by [g, 0] is in 9(G).
Proof: LetH<Gand g € G.

Then (H%) = H9 = H©®") whence HIO9 = H.

§10.2. Homogeneous and Universal Power

Automorphisms

A homogeneous power automorphism, 6, is one
where for all m € Z there exists n € Z such that if [x| = m
then x° = x". In other words, under a homogeneous power
automorphism elements of the same order map to the
same power. We denote the set of homogeneous power
automorphisms of G by J((G).

If n e Z, we denote the map g —g" by 0. If 0 is
an automorphism of G and 0, = 0y, for some m then we
call 6, a universal power automorphism for G. We
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denote the set of universal power automorphisms for G by
AG).

You may be wondering why the definition of
universal power automorphisms refers to inverses while
those for power automorphisms did not. You’ll find out
soon.

Theorem 4: U(G) < I((G) < #(G) < Aut(G) and all are
normal subgroups of Aut(G).

Proof: It’s obvious that U(G) < H(G) < P(G) < Aut(G).
Moreover it’s easy to show that all these sets are closed
under composition, or multiplication of functions. We
need to be careful when it comes to inverses.

The inverse of a power automorphism is a power
automorphism  because we insist that power
automorphisms map every subgroup onto itself.

If 6 € 3(G), then for all g, h € G with the same
order m, there exists n e Z such that g° = g" and h® = h".
Now GCD(m, n) =1, so mh + nk = 1 for integers h, k.
Now (gn)e—l =g= gmh +nk — gnk_

Hence go " = ((g") 0 )* = g*
Similarly ho™" = g and so 67 e %(G).
So AG), H(G) and #(G) are all subgroups of

Aut(G). The fact that they are all normal in Aut(G) will
be left as an exercise.
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In a later section we will discuss power
automorphisms of the Prufer p-groups. Here there
automorphisms of the form 0, where 0,7! is homogeneous
but not universal.

Theorem 5: 3((G) < Z(Aut(G)).

Proof: Let 6 € Aut(G) and suppose that c € U(G).

Let g € G. Then |g° = |g| and so there exists an integer n
such that g° = g" and (g%)° = (g%)".

Then g% = (9°)° = (¢°)" = (@")° = g™

Example 4. Aut(Qs) = S4, as shown in Example 5 of
Chapter 9.
Qs =(A, B|A* B2=A2 BA=A"'B).
If o is the map that sends A—>A™, B—B and
B is the map that sends A—A, B—B then
P(Qs) = (o, B| a? P Po = af) = Va.
I3(Qs) = U(Qs) ={ap) = Ca.

§10.3. Power Automorphisms of Abelian

Groups

Theorem 6: If G is a non-periodic abelian group then
PG) = H(G) = wU(G) = Cy,, consisting of 1 and 0_;.
Proof: Let x € G with infinite order and lety € G.

Let 0 € 9(G). Then x° = x" where n = £1.

Let y® = y™ and (xy)® = (xy)-.

Suppose that x° = x.
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Case I: y has infinite order and y® = y*:

Then (xy)? = xy~t = (xy)t.

In that case x!t = y1*!,

Applying 0 to both sides x*t = y-*9 and so y2+0 = 1,
Since y has infinite order we would have t = —1. But then
x*~t = 1 which gives t = 1, a contradiction.

Case I1: y has finite order:

Then (xy)° = xy™ = (xy)t.

Then xtt = y™t,

Since y™ has finite order, t =1 and so y® = y.

Soforally € G, y?=yand hence 6 = 1.

Suppose that x = x1.
Now 0-; € 9(G) and hence so is 60_;. But 60_; fixes x and
so by the above, 60_; = 1, and s00 = 6.

Theorem 7: Let G be a finite abelian p-group of exponent
p". Then 9(G) = I(G) = U(G) = Zp™.

Proof: G is a direct product of its Sylow p-subgroups.
Let a € G of order p". Then G = (a) x B for some B.

Let 0 € 9(G) and suppose that a® =a". Let b e B.

Then b® = b for some k.

Then (ab)® = a'b* = (ab)' for some t.

Hence a™! = b*X. Since (a), B are disjoint, 8" ' = bt* = 1.
. b'=bXand p" | r —t. Since |b| divides p", bk = bt = b".
Hence 6 = 6.
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Theorem 8: For all finite abelian groups G, #(G) = w(G).
Proof: For each prime p, let Gp denote the Sylow p-
subgroup of G and suppose that the exponent of Gy is mp.
Let 6 € PG). Then 6 restricted to G, is a power
automorphism of the form x — xM. By the Chinese
Remainder Theorem (see my notes on Number Theory),

there exists N such that N = np(mod mp) for each prime p
dividing |G|.

§10.4. Automorphisms of the
Prufer Groups
In Chapter 7 we discussed the Prifer p-groups.
pr = <A1, Az, | Alp, Azp = Al, Agp = Az, >
This is an infinite abelian group, but although the

commuting relations are missing they can be deduced
from the power relations.

The elements have the form Ai with 0 <k < p. Itis
locally cyclic meaning that any finite subset is contained
in a cyclic subgroup. For if X = A and Y = A}", with
i <jthen Aj = Aij" and so [X, Y] = 1. In fact the only
subgroups are 1, (A1), (Az), ..., (Ai), ..., Zy. Since no
two of these are isomorphic, every automorphism of Zy~
must fix every subgroup. Hence Aut(Zp*) = 9(Zp™).

Let o = (ki, k2, ...) be an infinite sequence where
for each i, 0 < kj < p and k; > 0. Define 0q: Zp*—Zp™ to
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be the automorphism induced by mapping each A, to AN
where N = ky + pkz + pZks. .. + p"kn.

This is well-defined because AnP = An-; and, under
0, An—>ARN and so AP >ARPN = ApN = Ap M where
M = ky + pka + pk,... + p"2kn_1 Since |An-1| = p™L.

It is easy to check that O, is a power
homomorphism. Moreover it is clearly a homogeneous
power homomorphism. But unless there exists K such that
ke = 0 for all n > K, 6, is not a universal power
homomorphism,

The expressions of the form o are usually written

as formal series as 2 kip"* where for each n, 0 <k, < p.
n=1

These can be made into a ring called the ring of p-adic

integers and Aut(Zy~) = (Zp~) = 3(Zp~) is isomorphic to

the group of units of this ring. However U(Zp~) is

isomorphic to the group of integers that are coprime to p.

§10.5. The Centrality Theorem

| denote the image of an element g under the
function 0 by g® and I define g~ to be (g% 2. I also define

[9.6] =g7'g° and [g, 8, h] =[[g, 6], h].

Theorem 8: If 0 is a power automorphism of G and

g € G then the inner automorphism induced by [g, 6] is
also power automorphism of G.

Proof: LetH<Gandletg € G.
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Then (H9)? = HY = H9” whence
H= ngg_l = Hg_lge = H[9.6]

Theorem 9: If 6 is a power automorphism of G and
g,h € Gthen|g, 6, h][h,06,g]=1and
[9, 0, h] € (@) N (h).
Proof: Since g°h® = (gh)® e (gh), g°h® commutes with gh.
Hence
[9, 6, h][h™, 6, g'] = gg~*h~*g~*(g°h®)(gh)h g™
=gg~°h~*g~*(gh)(g°h)h~°g™*
=1.
By Theorem 6, [g, 0, h] € (h) and [h™, 0, g] < (g).
Hence for all g, h € G, [g, 6, h] € (g) n (h).
Finally, [, 0, g] = [[h, 0], ¢] ™

[h, 6, gl 1~
[h, 6, g] since [h, 6, g] € (h).

An automorphism of a group G is central if [0, g] € Z(G)
forallg € G.

Theorem 10: If 6 € 9(G) and [gi, 6, hj] =1fori=1, ...,
nandj=1, ..., mthen

[ljgi,ﬁ,ljjhj} -1

Proof: By Theorem 2 we may assume that m > n.
We prove this by induction on m.
If m=1thenn=1and[gs, 6, hi] =1 by assumption.
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Suppose m > 1. Then

by the induction hypothesis.

Theorem 11: Suppose G = (X, y) is an abelian p-group,
written additively, where |x| = p™ and |y| = p" and where
n<m. Then G =(x) @ (ux + y) for some u.

Proof: Choose u so that ux + y has minimal order p'.
Clearlyt<n<m.

Suppose (ux + y) N (x) = 0.

Then ptt(ux +y) = p"rx for some x.

Hence pt*[(u — p™'r)x + y] = 0, a contradiction.

The following is one of my own theorems, proved
as part of my PhD thesis.

Theorem 12 (COOPER): Every power automorphism is
central.

Proof: Let F be a group with a non-central power
automorphism 6.

Then for some g, h e F,d=[g, 6, h] = 1.

By Theorem 9, d € (g) n ¢h) < Z(K) where K ={g, h) and
so |g|, || are both finite or both infinite.

Suppose |g|, [h| are both infinite.
Then g®=g*and h® = h, for if g° = g or h® = h we would
obtain a contradiction by Theorem 2.
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Hence [g, 0] =g2and [h, 6] =h=2

By Theorem 7, h9® = h-1 since d # 1.
Hence [g, 0, h] = h? Similarly [h, 6, g] = ¢°.
By Theorem 8, g?h? = 1 whence

[9, 6, h] =[g72 h] = 1, a contradiction.

So |g| and |h| are both finite. By Theorem 9 we may
assume that they both have prime power order. By
Theorem 2 the prime must be the same, say p. in each
case. Since 0 is non-central on K/(dP) we may assume that
dr=1.

Let H={(]g, 0], [h, 6]).
We may suppose that |[g, 6] > [[h, 6]|.
Now [h, 6] = h" for some integer .
Hence [[g, 6], [h, 6]] = [9, 6, '] =g, 6 h]’
e (d) < Z(H).
Hence H is nilpotent of class at most 2.
Being finitely generated H is finite.

If p=2and |h| = 25 it follows that [n2" ", 0] = 1 whence
r is even and H is abelian.
If p > 2 then H being nilpotent, it is a finite regular p-
group.
Hence, by Theorem 6, H is verbally abelian, so

{[g, 6]) n {[g, 6]"[h, 6]) for some u.
Now d and [g, 6] are both contained in (g) and so one is a
power of the other.
However d commutes with h while [g, 6] does not.
Hence d = [g, 0] for some t.
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Thenifv=u(l-1t),
[9", h, 6] = [g™"g"h, 6] = (g"h)"[g™*", 8](g"h)[g"h, 6]
=d™[g" 0l[g", 6, h][h, 6]
= [g, 01"[h, 0].
So ([g, 6]) " {[g"h, 6]) = 1 and so either [g, 6] = 1 or
[g'h, 6] =1 or (g) N (g'h) = 1.
Therefore by Theorem 2 [g, 6, gh] = 1.
But (g, h) = (g, g’h) and so, by Theorem 3, 0 restricted to
(g, h) is central, a contradiction.

Corollary 1:
Power automorphisms fix the elements of G'.

Corollary 2: Conjugates map to the same power under a
power automorphism.
Proof: Suppose that 6 € #(G) and that g° = ¢".
Leth e G.
Then (h~gh)° = (g [ g,h])°
=g°[g, ]
e gr—lh—lgh
= hlg'h, since g"* € Z(G)
= (h~igh)".

The kern of a group G is the intersection of all the
normalisers of the subgroups of G. It is the set of elements
of G that induce inner automorphisms that are power
automorphisms.
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Corollary 3: K(G) < Z;(G).

§10.6. Hamiltonian Groups

A Dedekind group is a group in which every
subgroup is normal. In such a group every inner
automorphism is a power automorphism. Clearly all
abelian groups are Dedekind. A Hamiltonian group is
defined to be a non-abelian Dedekind group.

Clearly G is Dedekind if and only if it is equal to
its kern.

Let K be the class of Dedekind groups.
Then @ c K. The Quaternion group Qs is non-abelian and
Hamiltonian.

Theorem 13: K is S-closed and Q-closed.

Proof: Let G € K and let H <G.

If K<H then K< G andso K is normal in G, and hence
normal in H. Hence H € .

Let H<G and let K/H < G/H for some K.

Since K < G, Kis nhormal in G and hence K/H < G/H.
Hence G/H e .

Example 6: K is not closed under P because Ss/A; and

Ags are both cyclic, and hence belong to H. Yet S; is not
Hamiltonian.
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Theorem 14: Hamiltonian groups are class 2-nilpotent.
Proof: Suppose that G is a Hamiltonian group.

Every inner automorphism, being a power automorphism,
IS central.

So, if X, y € G then x¥ = xz for some z € Z(G).

Hence G’ < Z(G) and so G/Z(G) is abelian.

This means that Z(G/Z(G)) = G/Z(G) and so Z,(G) = G.

Theorem 15: Hamiltonian groups are periodic.
Proof: Let G € 9 — @ We begin by showing that elements
of infinite order, if there are any, must commute. Suppose
that x, y are elements of infinite order that do not
commulte.
Then xtyx =ytand y-xy = x1.
Hence [, y] = xY(yxy) = x2,
But [x, y] = (x"tyx)y = y? so x2 = y2,
It follows that y> commutes with x and so

[,y =[xyl =1
But by the above argument this will mean that x = y® and
so y* = 1, a contradiction.

Recall that tG denotes the torsion subgroup of G. Now if
G < G, G will be generated by elements of infinite order
and so will be abelian, a contradiction. Hence G is
periodic.

Being a periodic nilpotent group of class 2 or less,
a Hamiltonian group is the direct sum of its Sylow
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subgroups, each of which will be Hamiltonian. So now
we must investigate Hamiltonian p-groups.

Theorem 16: There are no Hamiltonian p-groups if p is
odd.

Proof: Suppose G is a Hamiltonian p-group, where p is
an odd prime. G is verbally abelian, and every power
automorphism of G, including the inner ones, is a power
automorphism of G-, the corresponding abelian group.

Let g, h be two non-commuting elements of G and
let H = (g, h) and suppose that |h| divides |g|.

Let O be the power automorphism of G- induced by
conjugation by g in G. Then 6 restricted to H is a power
automorphism of H and hence it has the form x — x" for
some n. Sog=g"and gthg = h".

Since |g| divides n —1, |n| divides n =1 and so h" = h, a
contradiction.

Theorem 17:

Suppose G ={a, b) is a nilpotent 2-group of class 2 where
(a) isnormal in G, |a] > |b| and (&) ~ {b) > 1.

Then G = Qs.

Proof: Let |a| = 2" and |b| = 2™ where n > m.

Let |G:(a)| =2%. Thent<m<n.

Now [b, a] = a2’k for some odd k and some r.

Since G is non-abelian, r > 1.

Now b2" = as2% for some odd s and some q.
[NOTE: For G=Qg={(a, b|a* b?>=a? ba=a"h),
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t=1,m=n=2,r=1,k=1,s=q=1]

Then |a29 = 2"9 and |b2Y| = 2™ Hence g =n +t —m.
Let c =av2" b for some v.
C2t _ a2n-m+tbt[b, avzn—m]zt—l(zt_ 1)

_ 2vs+k2 v,

If v[1 + k2™%(2! — 1)] = —s (mod 2™ then ¢ has order 2%,
If r >2then 1+ k2™%(2! - 1) is odd and so this congruence
can be solved for v. For such an element v, |c| = 2! and so
G =(a, b) =(a, c). Since |G| = 2™ = |a.|c|, (@) N (c) = 1.
Hence r = 1, [b, a] = a2k, Hence blab = a2,

Since [b, a] € Z(G), a¥, and hence a2 € Z(G).

Now a2 = (a?)° = (a°)? = a2k, from which we conclude
that a* = 1. Again, since k is odd, a* = 1.

Since (@) N (b)>1,b*=a? = 1.

S0 G = Qs.

This proof is based on one in Group Theory by Eugene
Schenkman (page 192).

Theorem 18: Let G be a Hamiltonian 2-group.

Then G = Qg x A where A is an elementary abelian group.
Proof: By Theorem G is nilpotent of class 2.

Leta, b € G such that ab = ba. Let Q =(a, b).

Now (a), (b) are normal subgroups of G, and hence of Q,
and if they are disjoint then Q = (a) x (b). Hence ab = ba,
a contradiction, so (a) N (b) > 1.
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By the Theorem 16 Q = Q:s.

Let K= Cg(H). The cosets of K in G are thus:

K, Ka, Kb, Kab
since 1, a, b and ab induce different inner automorphisms
on Q. Suppose that k € K of order 4.
Then (ak) = {1, ak, a%k?, a’k®}.
Now b*(ak)b = a—tk = a®k, which is not one of the powers
of ak, a contradicting the fact that G is Hamiltonian.
Hence K has no element of order 4. It must therefore be
an elementary abelian group.

It can be viewed as a vector space over Z,.

Now (a?y < K and so can be viewed as a 1-
dimensional subspace of K. The only basis for (a?) is {a?}
and this can be extended to a basis, %, for K.

Let £= % —{a?} and let A be the subspace spanned
by £ Additively L is an elementary abelian 2-group.
Clearly G = Q x A which has the required form.

Theorem 19: A Hamiltonian group is isomorphic to

Qs x H where H is an abelian group with no element of
order 4.

Proof: Let G be a Hamiltonian 2-group.

By Theorem 13, G is nilpotent of class 2.

By Theorem 14, G is periodic.

Hence G is the direct product of its Sylow subgroups,
each of which is a Dedekind group.
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By Theorem 15 the Sylow p-subgroups for odd primes p,
are abelian. Let P be the Sylow 2-subgroup. It must be
Hamiltonian.

By Theorem 17, P = Qg x A where A is elementary
abelian. Hence G = Qg x A x B where B is the direct
product of the Sylow p-subgroups for odd primes p. Now
take H=A x B.

Note that in Theorem 17 we used the standard
theorem of vector spaces that every linearly independent
subset of a vector space can be extended to a basis.

However the proof that you’ve seen only works for
finite-dimensional vector spaces. To prove it for all vector
spaces one needs Zorn’s Lemma, which is equivalent to
the Axiom of Choice.

It can be shown that there cannot possibly exist a
proof that the Axiom of Choice is true, nor a proof that it
is false. Therefore you’re logically free to accept or reject
the Axiom of Choice!

If you prefer to be an Axiom of Choice agnostic
then I’m afraid that you will have to limit Theorem 18 to
finitely generated Hamiltonian groups.
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EXERCISES FOR CHAPTER 10

Exercise 1: For each of the following statements
determine whether it is true or false.

(1) The only power automorphisms for a dihedral group
Is the trivial one.

(2) A(R) = R*,

(3) For all periodic abelian groups all power
automorphisms are universal.

(4) Homogeneous power automorphisms commute with
any automorphism.

(5) The kern of a group is the intersection of the
normalisers of all the subgroups of G.

(6) If 6 is a power automorphism of G then forallg € G
there exists z € Z(G) such that g° = gz.

(7) Qs is the only finite Hamiltonian 2-group.

(8) There are no Hamiltonian groups of finite odd order.

Exercise 2: How many power automorphisms of order 2
are there for Cj440?

Exercise 3: Let G = (A, B| A3, B, BA = A!B).
Find 2(G) and u(G).

Exercise 4: Let G = (A, B| A%, B!, [A, B] = B®).

(@) Show that G is nilpotent of class 2.

(b) Show that A® = A3, B® = B! induces an automorphism
of G.
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(c) Show that 6 € 9(G).
(d) Is 6 € H(G)?
(e) Find the order of 6.

SOLUTIONS FOR CHAPTER 10

Exercise 1:

(1) TRUE: All non-trivial dihedral groups are generated
by elements of order 2.

(2) Remember that R is normally written additively, so
that a homogeneous power automorphism would be
written as x—nx for some non-zero n. Now it is true that
all such maps are automorphisms, but they are not power
automorphisms because the do not map every subgroup
onto itself. For example x—2x maps Z to 2Z. An element,
X, of infinite order can only be mapped to x or —x by a
power automorphism and, in fact, the only non-trivial
power automorphism of R is x—>—X.

(3) FALSE: The Prifer groups have non-universal power
automorphisms.

(4) TRUE

(5) TRUE

(6) TRUE: This is the Centrality Theorem

(7) FALSE: Qs x C;, Qg x Cyx Cy, ... are all
Hamiltonian 2-groups.

(8) TRUE

Exercise 2: $(C1aq0) = Z14a0". Now 1440 = 2°.325 s0
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@(C1440) = 232# X Zg# X Z5# = Cg X Cg X C3 X Cz X C4.
The Sylow 2-subgroup has 4 direct factors so the number
of elements of order 2 is 2 — 1 = 15.

Exercise 3: %(G) = C, where generated by 6 where
A’=Aand B =B

AG) = 1.
Exercise 4:
(a) G’ = (B®).

Since A'B'AB = B% A'B'A =B"and so A'BA = B°.

Then A~B8A = B"? = B?, s0 B® € Z(G).

Hence G’ < Z(G) and so G is nilpotent of class 2.

(b) Under 6: A—>A3 and B—>B!.

So Now (A% = A® =1, (B =1,

A—SBllAS = B11.9° = BBOl9 - BS and (89)11 - B99 — BS.

So A? and B? satisfy the same relations as A, B and hence

0 is an automorphism.
roso _ raroiss . J(ATBY)Yifris even

(€) (AR =ATB = {(ArBS)“ if ris odd °

Hence 6 is a power automorphism.

(d) Since A, B have the same order, and A® = A3 and B®

= B!, 0 is not homogeneous.

(e) Under 0: A>A3 A SAY = AYL A3 = A and

B »B"*—>B¥ =B°»B%® =B »B* =B.

Hence 6 has order 4.
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